- Leter from Dr. Julie Brisset (Principal Investigator of the Arecibo Observatory)13 Sep, 2022
- Arecibo Deputy Principal Scientist to Explore the Cosmos with the JWST02 Sep, 2022
- Letter from the Director22 Aug, 2022
- Piercing through the Clouds of Venus with Arecibo Radar17 Aug, 2022
- Summer greetings from the Facilities and Operations Team!17 Aug, 2022
- Arecibo Observatory at the Small Bodies Assessment Group12 Aug, 2022
- Meet the 2022 Arecibo Observatory REU students!11 Aug, 2022
- Meet Luis R. Rivera Gabriel, Research Intern in the Planetary Radar Group09 Aug, 2022
- Updates from the 2022 CEDAR Workshop in Austin, TX09 Aug, 2022
- Insights into the AAS Conference from AO Analyst Anna McGilvray08 Aug, 2022
- American Astronomical Society’s 240th Meeting: Plenary Lecture Building the Future of Radio Science with the Arecibo Observatory by Dr. Héctor Arce. 28 Jul, 2022
- TRENDS 202227 Jul, 2022
- Advancing IDEA in Planetary Science 27 Jul, 2022
- The Arecibo Observatory: An Engine for Science and Scientists in Puerto Rico and Beyond27 Jul, 2022
- Cryogenic Frontend work for the 12m telescope entering phase II21 Jul, 2022
- Remote Optical Facility Updates20 Jul, 2022
Cassini Data Solves Mystery of Arecibo Radar Signals on Titan
Byadmin28 September 2020 Planetary
Image credit: NASA
Planetary |
For nearly two decades, exceptionally bright radar reflections from Saturn’s moon, Titan, have puzzled scientists. A new study, published in Nature Communications, has finally resolved the mystery.
“Using new evidence from NASA’s Cassini mission, we were able to reopen the Cold Case,” said lead author Dr. Jason Hofgartner of the Jet Propulsion Laboratory. “Our investigation showed that the anomalously bright reflections are likely from dried ancient lakes, known as paleolakes.”
The exceptionally bright radar reflections were initially thought to be a sign of current hydrocarbon lakes or seas. However, when Cassini flew past the moon, it only saw lakes at the poles, not near the equator where the Arecibo radar signals were observed.
“We looked at all of the available data from Cassini: the high-resolution radar images, the near-infrared spectral data, and - most importantly for this work - the radar brightness in altimetry data that primarily measures the topography of Titan,” explained Dr. Hofgartner, who was an associate team member of the Cassini radar instrument.
After comparing those data with Arecibo radar observations, Dr. Hofgartner and his team noted that the unique radar signals were reflecting from two specific geological regions on Titan: the Hotei and Tui Regiones.
“At that time, it was unknown whether these regions were created by cryovolcanism (icy volcanoes) or if they were remnants of ancient lakes or seas.” Dr. Hofgartner continued, “This new analysis indicates that the paleolakes were the culprit.”
“The Cassini observations helped Arecibo because we didn’t fully understand those anomalously bright observations until Cassini could take a closer look,” Dr. Hofgartner reported. “The reverse is true, too, because Arecibo’s data gave us the ‘shining beacon’ for areas of high interest that Cassini needed to look at!”
“The reverse is true, too, because Arecibo’s data gave us the ‘shining beacon’ for areas of high interest that Cassini needed to look at!” - Dr. Jason Hofgartner, Jet Propulsion Laboratory
Dr. Hofgartner shared these new results with the staff at Arecibo in a virtual seminar on August 5, 2020.
“This work was enabled - well, would have been impossible - without the Arecibo Observatory. It is an extremely valuable, one-of-a-kind resource,” Dr. Hofgartner conveyed.
“This work was enabled - well, would have been impossible - without the Arecibo Observatory. It is an extremely valuable, one-of-a-kind resource.” -Dr. Jason Hofgartner, Jet Propulsion Laboratory
“It is the only facility that can make these types of observations with the necessary resolution.” He added, “When Titan is visible again in 2028, we want to be ready!”
The detection of paleolakes is a clear reminder of how science is advanced through synergies between ground-based and spacecraft observations. Dr. Hofgartner asserted, “The combination of Arecibo radar data with spacecraft observations has helped unlock the history of Titan, and could be used to better understand other ocean worlds in our Solar System.”
Future Arecibo radar observations could support the investigation of NASA’s upcoming Dragonfly mission, which will use a rotorcraft to fly to and analyze multiple locations on Titan’s surface in 2034.
“Titan is a very exciting, Earth-like world. It is the only other place we know that has stable liquids on the surface.” Dr. Hofgartner proclaimed, “There are a lot more discoveries to make!”
You can read more about Titan’s paleolakes and their unusual radar properties in the Nature Research Astronomy Community Blog written by Dr. Hofgartner.
About Arecibo
The Arecibo Planetary Radar Program is funded by NASA’s Near-Earth Object Observations Program. The Arecibo Observatory is operated by the University of Central Florida (UCF) in partnership with Universidad Ana G. Méndez - Universidad Metropolitana and Yang Enterprises Inc., under a cooperative agreement with the National Science Foundation (NSF).
Article written by Dr. Tracy Becker - AO Collaborator / SwRI Research Scientist
Contact: tbecker@swri.edu |
Head of Planetary Radar team |
Keywords: arecibo, observatory, planetary, hickson, radar, scattering, rocks, space, models, Geophysical, Research, Planets, electromagnetic, properties, mineral, powders