- Leter from Dr. Julie Brisset (Principal Investigator of the Arecibo Observatory)13 Sep, 2022
- Arecibo Deputy Principal Scientist to Explore the Cosmos with the JWST02 Sep, 2022
- Letter from the Director22 Aug, 2022
- Piercing through the Clouds of Venus with Arecibo Radar17 Aug, 2022
- Summer greetings from the Facilities and Operations Team!17 Aug, 2022
- Arecibo Observatory at the Small Bodies Assessment Group12 Aug, 2022
- Meet the 2022 Arecibo Observatory REU students!11 Aug, 2022
- Meet Luis R. Rivera Gabriel, Research Intern in the Planetary Radar Group09 Aug, 2022
- Updates from the 2022 CEDAR Workshop in Austin, TX09 Aug, 2022
- Insights into the AAS Conference from AO Analyst Anna McGilvray08 Aug, 2022
- American Astronomical Society’s 240th Meeting: Plenary Lecture Building the Future of Radio Science with the Arecibo Observatory by Dr. Héctor Arce. 28 Jul, 2022
- TRENDS 202227 Jul, 2022
- Advancing IDEA in Planetary Science 27 Jul, 2022
- The Arecibo Observatory: An Engine for Science and Scientists in Puerto Rico and Beyond27 Jul, 2022
- Cryogenic Frontend work for the 12m telescope entering phase II21 Jul, 2022
- Remote Optical Facility Updates20 Jul, 2022
New AO Lidar Observations of Ca+ in the Mesosphere and Thermosphere
Byadmin29 June 2020 Atmospheric
Space & Atmospheric |
Forty-eight tons (44,000 kilograms) of material from space fall onto the Earth each year. These meteoroids experience ablation and sputtering in the atmosphere, leaving behind metal and ion deposits that form thin layers in the ionosphere.
Calcium ions (Ca+) are the only metal ions that can be observed from the ground, so detecting these metals helps scientists understand how much meteoritic material is deposited in the atmosphere and how that material is then redistributed in the skies.
“For the first time, these calcium ions have been studied in the atmospheric layers between 90 - 111 miles (140 - 180 km) altitude at mid-latitudes,” stated AO scientist Dr. Shikha Raizada, who led the study titled New Lidar Observations of Ca+ in the Mesosphere and Lower Thermosphere Over Arecibo, published in the American Geophysical Union’s Geophysical Research Letters.
Dr. Raizada explained, “Only the Arecibo Observatory can perform direct ground-based metal ion measurements simultaneously with Incoherent Scatter Radar experiments, allowing a unique opportunity to study electron-ion interactions.”
“Only the Arecibo Observatory can perform direct ground-based metal ion measurements simultaneously with Incoherent Scatter Radar experiments, allowing a unique opportunity to study electron-ion interactions.” - Dr. Shikha Raizada, Senior Scientist at Arecibo Observatory
The intriguing observations of Ca+ at altitudes exceeding 75 miles (120 km) during dawn time opens up new opportunities to explore this undersampled region often referred to as “F-region” valley. This led the researchers to determine that the column concentration of these ions is half of those occurring in the lower altitudes (within the meteor zone between 50 - 75 miles, or 80 - 120 km). Additionally, the absence of meteoric metal during the pre-midnight hours is also surprising.
“Another key finding of our study was the detection of thin (<500 ft, or 150 m) calcium ion structures that are part of Sporadic-E (“Es”), which are thin layers of ionization in the E-region of the ionosphere,” Dr. Raizada related. This detection was enabled by the instrumentation upgrade that improved the range and height resolution of the Ca+ lidar. The simultaneous incoherent scatter radar observations revealed broader Es layers.
Dr. Raizada emphasized that “the studies reported in the paper represent a few cases, but more observations are required to get seasonal variability.” She encourages others to read the publication for more detail.
“Comparisons of lidar and Incoherent Scatter Radar data, which can only be done simultaneously at Arecibo, provide new insights about the ionospheric processes that are discussed in the paper. This further highlights the importance of the highly unique instrument cluster at AO,” Dr. Raizada concluded.
This work was led by Dr. Shikha Raizada and a team of researchers that included several other AO scientists: Dr. Jens Lautnebach; Dr. Nestor Aponte; Mr. Phil Perrilat; and Dr. Mike Sulzer; as well as J. Smith from NASA Langley Research Center and J. D. Mathews from the Pennsylvania State University.
Text provided by Tracy Becker - AO Collaborator/SWRI Research Scientist |
Technical Contact |
Keywords: arecibo, observatory, optics, shikha, lautenbach, lidar, puerto rico, New, Lidar, Observations,