- Leter from Dr. Julie Brisset (Principal Investigator of the Arecibo Observatory)13 Sep, 2022
- Arecibo Deputy Principal Scientist to Explore the Cosmos with the JWST02 Sep, 2022
- Letter from the Director22 Aug, 2022
- Piercing through the Clouds of Venus with Arecibo Radar17 Aug, 2022
- Summer greetings from the Facilities and Operations Team!17 Aug, 2022
- Arecibo Observatory at the Small Bodies Assessment Group12 Aug, 2022
- Meet the 2022 Arecibo Observatory REU students!11 Aug, 2022
- Meet Luis R. Rivera Gabriel, Research Intern in the Planetary Radar Group09 Aug, 2022
- Updates from the 2022 CEDAR Workshop in Austin, TX09 Aug, 2022
- Insights into the AAS Conference from AO Analyst Anna McGilvray08 Aug, 2022
- American Astronomical Society’s 240th Meeting: Plenary Lecture Building the Future of Radio Science with the Arecibo Observatory by Dr. Héctor Arce. 28 Jul, 2022
- TRENDS 202227 Jul, 2022
- Advancing IDEA in Planetary Science 27 Jul, 2022
- The Arecibo Observatory: An Engine for Science and Scientists in Puerto Rico and Beyond27 Jul, 2022
- Cryogenic Frontend work for the 12m telescope entering phase II21 Jul, 2022
- Remote Optical Facility Updates20 Jul, 2022
Multifrequency study of the peculiar pulsars PSR B0919+06 and PSR B1859+07
Byfrancisco.torres14 December 2021 Astrophysics
Astrophysics |
Data from the Arecibo Observatory, the Giant Metrewave Radio Telescope and Lovell radio telescope were used by a team of scientists, including AO’s Dr. Benetge Perera and ASAP’s Dr. Joanna Rankin, to study two swooshing pulsars.
TITLE
Multifrequency study of the peculiar pulsars PSR B0919+06 and PSR B1859+07
INVESTIGATORS
K M Rajwade, B B P Perera, B W Stappers, J Roy, A Karastergiou, J M Rankin
ABSTRACT
Since their discovery more than 50 years ago, broad-band radio studies of pulsars have generated a wealth of information about the underlying physics of radio emission. In order to gain some further insights into this elusive emission mechanism, we performed a multifrequency study of two very well-known pulsars, PSR B0919+06 and PSR B1859+07. These pulsars show peculiar radio emission properties whereby the emission shifts to an earlier rotation phase before returning to the nominal emission phase in a few tens of pulsar rotations (also known as ‘swooshes’). We confirm the previous claim that the emission during the swoosh is not necessarily absent at low frequencies and the single pulses during a swoosh show varied behaviour at 220 MHz. We also confirm that in PSR B0919+06, the pulses during the swoosh show a chromatic dependence of the maximum offset from the normal emission phase with the offset following a consistent relationship with observing frequency. We also observe that the flux density spectrum of the radio profile during the swoosh is inverted compared to the normal emission. For PSR B1859+07, we have discovered a new mode of emission in the pulsar that is potentially quasi-periodic with a different periodicity than is seen in its swooshes. We invoke an emission model previously proposed in the literature and show that this simple model can explain the macroscopic observed characteristics in both pulsars. We also argue that pulsars that exhibit similar variability on short time-scales may have the same underlying emission mechanism.
+ Read the Publication
|
|
Keywords: arecibo, observatory, stars, neutron, pulsars, general radio, telescope