- Leter from Dr. Julie Brisset (Principal Investigator of the Arecibo Observatory)13 Sep, 2022
- Arecibo Deputy Principal Scientist to Explore the Cosmos with the JWST02 Sep, 2022
- Letter from the Director22 Aug, 2022
- Piercing through the Clouds of Venus with Arecibo Radar17 Aug, 2022
- Summer greetings from the Facilities and Operations Team!17 Aug, 2022
- Arecibo Observatory at the Small Bodies Assessment Group12 Aug, 2022
- Meet the 2022 Arecibo Observatory REU students!11 Aug, 2022
- Meet Luis R. Rivera Gabriel, Research Intern in the Planetary Radar Group09 Aug, 2022
- Updates from the 2022 CEDAR Workshop in Austin, TX09 Aug, 2022
- Insights into the AAS Conference from AO Analyst Anna McGilvray08 Aug, 2022
- American Astronomical Society’s 240th Meeting: Plenary Lecture Building the Future of Radio Science with the Arecibo Observatory by Dr. Héctor Arce. 28 Jul, 2022
- TRENDS 202227 Jul, 2022
- Advancing IDEA in Planetary Science 27 Jul, 2022
- The Arecibo Observatory: An Engine for Science and Scientists in Puerto Rico and Beyond27 Jul, 2022
- Cryogenic Frontend work for the 12m telescope entering phase II21 Jul, 2022
- Remote Optical Facility Updates20 Jul, 2022
Near-Earth Asteroid 1999 KW4 Moshup: Planetary Defense Characterization Exercise
Byadmin15 December 2021 Planetary
Planetary |
TITLE
Near-earth asteroid (66391) Moshup (1999 KW4) observing campaign: Results from a global planetary defense characterization exercise
INVESTIGATORS
Vishnu Reddya, Michael S.Kelley, Jessie Dotson, Rob R. Landis, Lauren E. McGrawd, Marco Michelie, Nicholas A. Moskovitzf, Juan A.Sanchez, Patrick A. Taylor, Lorien Wheeler, James M. Bauer, Melissa J. Brucker, Maxime Devogèle, Joshua P. Emery, Olivier Hainaut, Dylan C. Hickson, Detlef Koschny, Jeffrey A. Larsen, Sean E. Marshallo, Robert McMillan, Brian A.Skiff, Flaviane C.F. Venditti, Anne K.Virkki, BinYang, Luisa F. Zambrano-Marin
ABSTRACT
Hazards due to near-Earth objects (NEOs) continue to pose a threat to life on Earth. While our capability for discovering NEOs has steadily progressed over the last three decades, physical characterization of a representative population has lagged behind. To test the operational readiness of the global planetary defense capabilities, we conducted a community-led global planetary defense exercise, with support from the NASA's Planetary Defense Coordination Office (PDCO) and the International Asteroid Warning Network (IAWN), to test the operational readiness of global planetary defense capabilities. This campaign focused on the characterization (direct imaging, radar, spectroscopy) of the binary near-Earth asteroid (NEA) (66391) Moshup (formerly known as 1999 KW4) and its moon Squannit. We chose a binary system because roughly one in six large NEAs are binaries. An additional goal was to apply lessons learned from this campaign towards ground-based characterization campaign for binary NEA (65803) Didymos, the target of the PDCO's Double Asteroid Redirection Test (DART) and the European Space Agency's Hera missions. Spectral observations of Moshup from the NASA Infrared Telescope Facility (IRTF) show similarities to Q-type asteroids. Based on its spectral band parameters, the best meteorite analogs for Moshup are L chondrites. We did not detect a hydration feature at 3 μm, which suggests that the entire surface is anhydrous. We imaged the binary using the SPHERE instrument on the Very Large Telescope (VLT) and obtained resolved spectral measurements of Moshup similar to those obtained with the NASA IRTF. Squannit appears to have slightly redder spectral slope than Moshup. Radar observations Arecibo Observatory at 2380 MHz indicate a polarization ratio of ~0.4, which is higher than the average values for the S complex asteroids, which includes Q types. The visible extent of the components from the radar observations, taken as proxies for their radii, suggest Moshup and Squannit have diameters of 1500 ± 120 m and 480 ± 60 m, respectively. We constrain the system mass to 2.2 ± 0.5 × 1012 kg with a maximum range for bulk density between ~0.8 g/cm3 for a very low-mass system with spherical shapes up to 2.7 g/cm3 for very high-mass system where Moshup has a more ridged-ball shape. We note that the radar-derived parameters presented in the paper are for the purposes of this exercise and do not supersede those in Ostro et al. (2006). We assessed the impact risk of a hypothetical impactor based on Moshup's physical properties using the Probabilistic Asteroid Impact Risk (PAIR) model. We assessed three impact risk scenarios at different epochs as the state of knowledge of Moshup improved. For kilometer-scale impactors like Moshup, the risk is driven predominantly by the potential for global climatic effects (95–97% of cases across the epochs) with a few percent driven by local damage and a few tenths of a percent driven by tsunami.
+ Read the publication
|
Keywords: